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ABSTRACT

A non-similar boundary layer theory for air blowing over a water layer on a flat plate

is formulated and studied as a two-fluid problem in which the position of the interface is

unknown. The problem is considered at large Reynolds number (based on x), away from

the leading edge, We derive a simple non-similar analytic solution of the problem for which

the interface height is proportional to x 1/4 and the water and air flow satisfy the Blasius

boundary layer equations, with a linear profile in the water and a Blasius profile in the air.

Numerical studies of the initial value problem suggests that this asymptotic, non-similar

air-water boundary layer solution is a global attractor for all initial conditions.
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1 Introduction

The effects of water layers driven over solid surfaces by wind are of interest in the performance

of aircraft in rain, for the de-icing of airplane wings and surely in many other applications.

Since such problems are intrinsically of a boundary layer type and since the more interesting

phenomenon which might arise, like the formation of waves, film rupture and the like are

probably best framed in terms of stability, it is necessary to derive the analytic forms that

such flows will take on when instability is neglected. This derivation is carried out here.

Previous works related to the present one are by Yih (1990), who modeled the de-icing

problem, and by Wang (1992), who considered the development of boundary layers in the

shearing flow of one fluid over another. Both works are flawed by assuming rather than

finding the shape of the interface. In the case treated by Wang, the interface is flat but the

jump of the normal stress is not zero. Yih assumed that flow in the air is a Blasius flow and

the flow in the water is a simple shear. This is a correct form for the boundary layer, as we

shall show, but he neglects the variation of film thickness with z and so cannot enforce the

kinematic condition at the interface or find its shape.

In this work, we formulate a non-similar boundary layer theory retaining all terms which

decay faster than 1/_, _ = z(U/2v_:c) 1/2, where v2 is the kinematic viscosity of air. All of

the interface conditions are enforced in this asymptotic regime. An effect of the small but

non-zero vertical velocity component at the interface is to force the interface to grow like

z 1/4 when the boundary layer in the air grows like z 1/2. The interface looks thin on the

scale of the boundary layer. Asymptotically, at large z, the water and air satisfy the Blasius

boundary layer equations with a linear profle in the water and the flat plate profile in the

air. This non-similar (or coupled self-similar) solution appears to be a global attractor for
all initial conditions.

2 Governing Equations

A water fihn of height V = h(z) is flowing on a flat plate driven by shear stresses emanating

from an air stream with streaming velocity U. We seek the nature of the flow under the

circumstances which give rise to Blasius boundary layers in the flow of one fluid over a flat

plate. This motivates the introduction of the same scales that are used in the classical case,

giving
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where u = f' is the x component of velocity, v = r/f' - f - _-_ is the y component if velocity,

r is the time, p is the pressure and f is the stream function. The parameters p2 and v2 are

for air; subscript 1 is for water.

These scales are introduced into the Navier-Stokes equations which are written below in

the new variables without approximation. The continuity equation becomes

Ov Ou _Ou
- r/_ + o_ = o. (9)0---_

The momentum equations are

Ou rI Ou 1 i)u 1 Ou

u _-_ --l- + (3)a_ 4_ _ _v_=
i _70p lOp_ ,, 1- , rt_ _a:2u 1 O2u 3r/ Ou 10u
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In the interface equations written below, [.] designates the jump (.)1 - (.)2. At the interface

71= r/*(y = h(z)), the velocity is continuous,

M= o, (5)

(6)

1 r/* Ov 10v

v 4_ 2 Or/+ _-0-_))1 = 0. (7)4_ 2

[v]= 0.

The shear stress is also continuous across 7/= r/*,

1 * Or/*. Ov -21(1 _ 1 7/* Or/* Ou

The jump in the normal stress is balancedby interfacial tension,
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wherea = (glU 2) (2v2x/U) '/2, g is the acceleration due to gravity, S = T/(v_p_U), and T is

the coefficient of surface tension. Density and viscosity are normalized by the corresponding

properties of the air

{ _- 0<*7<*7*.5 - (9)
P= 1 *7*<*7,

{ _ 0<*7<*7*_,2 - (10)
_-- 1 *7*<*7,

The kinematic equation of the free surface is written in the boundary layer coordinates

4_ 0*7*

u Or
0rl* 1 v

--- + = - .7") (11)

3 Asymptotic solution for large

Here we exhibit a special solution of our coupled air-water system which will be shown later

to be a global attractor of non-similar boundary layer solutions. We start by making several

assumptions. First we assume that for large x (large _) the horizontal velocity component

in the water is linear in y, and there is a similarity solution in the air with f(0) = if(0) = 0,

and f"(O) is constant. In the air we write

k y---_ (12)u = f'(*7), *7= xl/2,

and in the water

u = c(x)y, Q = udy - h 2 = constant. (13)

Secondly we assume that the interface position *7* ---, 0 as _ --_ oc. This assumption is

equivalent to assuming that as _ --o c¢ the liquid layer is a vanishingly small fraction of the

boundary layer in the air.

We are going to show that the continuity of the shear stress across the interface *7*implies

that c = Ax -1/2, with A a constant, so that u = Ar t can be expressed in terms of 7? alone.

The interface is on y = h(x), *7= 71" = k_-_2. The shear stress is continuous

Ou Ou h

#l_yy = _U2_yy at *7* = kx--_/2. (14)

Hence
,, , 0*7 k ,, kh

tqc(x) = #2f (*7)_yy =/t2x-i-_f (x--i-_). (15)

Now for large x, we have assumed that .7" = h(z)/z 1/2 --, O, so that f"@*) --, f"(0) which
is constant. Then

c(x)- #2kf"(O) Z
#1xl/2 - x_/2. (16)

Using (13), we may write

h2= 2Qxl/2 de] B2xl/2 (17)
A = '
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h = Bx 1/4. (18)

Using (18), we find that

Now

kBz 1/4 kB

Xl/2 xl/4 _ O. (19)

f'(rl* ) =u(h(x),x). (20)

For large x, r/* --, 0, so that f'(r/*) --, f'(0) = 0. Actually we know that u tends to zero

because the mass flux is constant but the flow area (18) keeps increasing. We may also show

that v(h(x),z) tends to zero for large x. We can do this in different ways. Suppose we

multiply the kinematic condition (11) by _u and let _ _ _.

v = u_-_] + url*. (21)

From (19) we know that, since _ = kx '/2, as _ _ _,

k3/2B

,Ib

(22)

Thus as ( _ c¢,

_ Orl* k3/2 B
= _,/2 --* 0. (23)

Since u --, 0 as _ _ _, so also v --* 0. So as _ --* o¢, both u(h(x),z) --* 0 and v(h(x),z) --* 0;

that is f'(rl* ) --* 0 and f(rl* ) _ 0. The interface conditions then become the same as the

boundary conditions for a Blasius boundary layer in the absence of the water layer but

displaced, and so the velocity in the air is given by the Blasius solution for the boundary

layer over a flat plate. The solution in the water f' = Art also satisfies the Blasius equation

ff" + v2f"= O, 0 < 71 < 71" _ 0 and implies that the jump conditions [f] = [f'] - 0 may

be replaced with the Blasius boundary conditions f(0) = f'(0) = 0 applied upon a solid

surface.

This shows that our original assumptions are self-consistent. The reader may verify

that the solution (13) with c(x) givenby (16) is self-similar (satisfies (24) without the the

bracketed term). The main good luck that we have is that r/* -. 0 _r large x even though

4 Non-similar boundary layers

Since the asymptotic solution for large _ is similar, but not in the usual sense, =we are

motivated to see if this solution can be embedded in a large class of non-similar solutions for

large _ (large Reynolds number Ux/2u2) and to investigate the possibility that the asymptotic

solution enjoys a special status as a global attractor for all solutions of this non-similar family.

Self similar boundary layers depend only on 7/and not on _. The _ derivatives of u, v and

7/* may be small, of the order of (-'_,n >_ 1, when ( is large. We retain those terms in each

equation which are O(1), dropping all terms of O((-n), For this computation we assumed

4
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that the first derivative of u with respect to _ scale with _-1, the second derivative with _-2

and _ = O(s_-3/2). These scalings can be verified a posteriori. We find that

and at 77= 77*:

O___P_P= O,
O77

af .,,Of
+ vf'- _(f' _--;' J --x;)= O,ff,,

a¢ a¢
(24)

0: 1 v _ :). (25)
If'] = 0, [f] = 0, [/Lf"]= 0, [p]-- [p]grl*, o---(-" _(u

Equation (24) can be found in Schlichting (1987). We may remark that the contributions

of the viscous terms in the normal stress balance are _-2 times the terms retained and the

surface tension terms are _-3 times those retained.
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5 Solutions of initial value problems for the non-similar,

two-fluid boundary layer equation

5.1 Evolution of a profile which is initially parabolic in segments.

Since the non-similar solutions depend on _, we are obliged to consider the evolution of flows

prescribed at some initial position _ = _o. Fortunately our simulations of those initial value

problems indicate a rapid decay from initial values to the asymptotic solution described in

§3. This situation is not unfamiliar. In the classical theory of boundary layers, the Blasius

solution, the similarity solution, is a global attractor for all initial value problems which are

not similar (see Serrin (1967)). In our case the attractor cannot be self-similar, but the non-

similar solution of §3 arises asymptotically, for large _ from all initial conditions explored.

The first initial condition we used to solve (24) and (25) is plotted below.

(S.C" 0.2

lf.C_

4.0"

o 0'.1 o'a o'._ ,'_ 'o'_' o'.e o'.? o'.l o'.,

/'

O.2

T I 0.1

0.1

O01"o _l._ o.d2 o.64 o._* o.&J 0.¢o o.iz o.t4 o.i, o.¢8 e_
f' (, to')

(a) (b)
Figure 1. Parabolic initial condition assumed for the horizontal velocity component f' with

rl* = 0.15 and _o = 50. (a) Initial condition. (b) Detailed plot of initial condition at the

interface.

For this initial condition 77*= 0.15 and _o = 50. These values were chosen to be representative

of conditions discussed by Hastings and Manuel (1985), in which they describe the results

of their wind tunnel measurements of a wing in simulated rain. In the above profile, for

0 < 7/< _*, f' is parabolic with f"' being positive. For q* < 77< 3.5, f' is parabolic with f"

being negative, and for r/> 3.5, ff = 1.0.

We solved (24) and (25) subject to the aformentioned initial conditions for _ > _o using

a finite difference scheme found in Schlichting (1987). This scheme is iterative using second-

order differencing for the 7/derivatives, and a first-order, implicit Euler differencing for the

derivatives. We assumed an interface 77* = a_ _, where a = z/*(_o)/_'o _(_°) and found the n(_)

given in figure 2.
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Figure 2. Plot of n for the non-similar boundary layer with initial conditions from figure 1.

The exponent function n(_) decays rapidly to -1/2, corresponding to a limiting power

law increase h(x) ¢x x 1/4 of the interface height as given by the asymptotic solution shown

in figure 1. For _ not much larger than _o the horizontal velocity component f' becomes

linear in r/, f' = c(_)7/, in the water layer and remains so for all greater t_. The shear stress

in the water, arc is directly related to the shear stress in the air at the interface through
#2 '

the tangential stress condition found in (25). From our calculations we find that the shear

stress in the air at the interface, f", asymptotically tends to the shear stress in the Blasius

boundary layer of a single fluid over a flat plate at the plate surface, as shown in figure 3.

O,_l

(l.11

0.04

o._ o._t o._ o.u o_ o.1'oo.i2 o.1'40.l'eo.1'1o._
/_,,o')

(a)

11 0.1¢

lh

o.e

o,B

0.7

,f/ 0.1, ..............................................................

0.4

O.3

0,.2

O.t

_.ot s4.1o td.lS r_.. _.2s s4.3o sd._

(b)
Figure 3 (a) Detailed plot of boundary layer solution in the water layer at _ = 50.0675 for

the initial conditions of figure 1. (b) Shear stress, f", in the air at the interface, 71" = at_'_(_),

for _ > _o.

Notice that the exponent function n(t_) tends to its asymptotic value extremely rapid, while



the shear stressat the interface in the air f" has a much slower decay. The reason for this

difference is n(_) becomes nearly -1/2 as soon as the horizontal velocity component in the

water becomes linear, which occurs for _ ,lot very much greater than _o. Figure 3 shows that

the flow has not yet reached its asymptotic form, since the shear stress at the interface in

the air is appreciably different from its asymptotic value. The flow then slowly tends to its

asymptotic state. The flow is non-similar for finite _ because the boundary layer height and

the interface do not scale the same. Asymptotically one may say the flow is similar because

77* goes to zero and the flow in the air is the self-similar Blasius profile.

5.2 Evolution of another profile which is initially parabolic in

segments.

In the next example we used the same initial f'(rl) for r/> 77* as in figure l(a), but the profile

shown in figure l(b) was replaced with the one shown in figure 4.

O.2

OSr

o.I-

o-, o_ 0._

/'

Figure 4. Initial profile in the water at ( = (o. The profile in the air is shown in figure l(a).

In figure 5 we show the evolution of the exponent n(_) for ( > _o for the aformentioned

initial condition. Obviously n(_) --+ -1/2 for large _ and r/* = a_ -_/2 for large _. The

solution given in §3 is attained asymptotically.
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Figure/5. Exponent function n(() for r/* = a('_(_).

5.3 Evolution of a profile which is initially in similarity form but

with _*(_o) = 0.15 > 0.

The initial condition shown in figure 6 is generated from (24) and (25) when the _ derivatives

are set to zero, so that

ff" + vf"= O, (26)

Op

=0,

and at r/= r/*:

[/'] = 0, [f] = 0, [ktf"] = 0, [p] = [p]gr/*. (27)

This system is solved using a iterative finite difference scheme using second order differencing

and gives rise to the profiles shown in figure 6.

e.t

|.(t

4.tt

'r l 3.0'

2.0'

1.0'

0.0
0.0 0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.11 0.0 1.0
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0
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0.0000

f-without water layer

• h water layer

0._4 o+o_oo o.o_++,
.t.+'

(b)

o.o'o11 o.o'o:m

Figure 6. Solution f'(r/) of (26) and (27). (a) rt > 0.15. (b) r/< 0.15. The Blasius solution

of (24) for f(0.15) = f'(0.15) = 0 is also shown in (b).

qP.



The profiles in figure 6 were used for initial values in the non-similar equations (24) and

(25) and they evolved to the coupled self-similar solutions described in §3 in which r/*(_) ---, 0.

The difference between the solution in the air and the classical Blasius flat plate solution

also tends to zero. A graph of the exponent function for this example is shown figure 7.

4L5.0 -

-o,r_o2 S

-ILLS

-0.,04

n

_.i,$

.o.1_$.

4.s.i.

.o..1_.o lob.olr_.o2_.o._.o 3_.o3_b.o.b.o4_.om.o,_.,,ko

Figure 7. Exponent function n(() for r}* = a_ '_(_) for the initial conditions of figure 6.

In these examples and in all the others, which we tried but are not shown, the asymptotic

solution given in §3 is ultimately attained.

6 Behavior of derivatives of the non-similar solution

In deriving the system which lead to the above solutions, we assumed that first and second

derivatives of u and r/* with respect to _ were inversely proportional to _-n, n > 1. _From
0 2 *

our solution we find that _ scales like _-3'2 and _ scales like _-s/2, in agreement with

our scalings. Since _ scales with x 1/'2, the interface position scales with x ]/'t.

In order to examine the _ derivatives of u, we define two functions,

E,(,, (2S)

F2(r/,_) = _02.5'.t" (29)

Depending upon the initial conditions chosen at _o, Fa(q,_o) and F2(rl,_o ) may be extremely

large. However, for larger values of _ the horizontal velocity component in the water becomes

linear in 77, n(_) tends to -1/2 and Fl(r/,_) < 1, F2(r/,_) < 1 (see figure 8).

l0
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Figure 8. Plot of FI(r/,_) and F2(¢_) versus 71for _ = 50.01 for the flow plotted in figure 6.

JEll and IF2ldecrease, as shown in figure 9, although the decrease in levi is very small.

Since as _ --, oo, t/* --, 0 and the flow in the air goes to the Blasius boundary, both F1 --* 0

and F2 --, 0 as _ --* oo.

Ti

_J

4.O

Sh

|.O

lh

*-_ -,'J 4J 4".7 4', 4'J _ ._

|J

4.1

SJ

|J

1.1

°_1 o'.o 0'.1 0'.2 o'.s o'_ o'.s o'.e o.*.7 o_J o'.l 1:o

Figure 9. Plot of F_(,7,_)and r2(_) versus _ for _ = ]29.] for the fiowplotted in _gure 6.

Then since F_ and F2 are both 0(1), the assumptions that were made in deriving (24) and

(25) are shown to hold.
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7 Concluding remarks

The analysis given in this paper can be extended to two-fluid boundary layer problems with

other free streams, say U = Uoox '_. It is also probable that the solution given in {}3 and the

other limiting solutions to which we have just alluded are unique large x limits of steady

coupled air-water solutions of the Navier-Stokes equations with different initial profiles at

X -_ Xo.
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